
sprec

A speaker dependent single word speech recognition library

Author:
Martin Pitt

E-Mail: martin@piware.de

Supervisor:
Dr.–Ing. J. Helbig

Technical University of Dresden
Faculty Technical Acoustics

20.06.1997

Preface

Speech recognition with computers is a theme that fascinated me for quite a long time. To control
a computer in the natural human way – by talking – would be a relief not only to newbies and
handicapped people, but also to everybody who has to type long text all the day.

Scientist have worked to equip computers with a hearing sense for human languages for quite a
long time. But today’s systems are far from being practically usable and have very little in common
with the understanding machines in science fiction films. Probably, perfect speech recognition can
not be achieved on classic computers.

But nevertheless I wanted to have a little foretaste. Our project assignment in the 11th grade
was a welcome opportunity to try it for myself. Of course I did not achieve a major breakthrough,
but even for my modest single–word recognizer (up to about 50 words) there are some applications
like controlling program interfaces or external devices, e. g. a FischerTechnikTM model, the famous
coffee machine, the electric model railway or a universal remote control.

I dealt with different methods of signal analysis and time normalization, programmed an easy–
to–use pattern management and some small demonstration programs which illustrate how to use
the library.

Martin Pitt
in June 1997

Note: Originally, the library was programmed under DOS. I wrote a quite pretentious graph-
ical shell that supported all features of the library. Now I’m using Linux, so I rewrote it to be
portable. It also became much more efficient and easier. This is the reason why I only publish the
library without a shell. If you are interested in the DOS version it anyway, feel free to mail me.

1

Contents

1 Theories and algorithms of speech recognition 3
1.1 Used symbols . 3
1.2 Technical terms . 3
1.3 Component diagram . 3
1.4 A/D transformation . 3
1.5 Signal analysis . 4

1.5.1 Zero cross analysis . 4
1.5.2 Cepstral coefficient analysis . 5

1.6 Recognition of word boundaries . 6
1.7 Word patterns . 7
1.8 Comparison with reference patterns . 7

1.8.1 Linear time adaption . 7
1.8.2 Nonlinear time adaption . 7
1.8.3 Distance between feature vectors . 8

2 Interface of sprec 9
2.1 Overview . 9
2.2 Global declarations . 9
2.3 class Pattern . 9

2.3.1 Type definitions . 9
2.3.2 Constructor and destructor . 9
2.3.3 Access to properties . 10
2.3.4 Feature vector management and access . 10
2.3.5 File I/O . 10

2.4 class PatternDB . 11
2.4.1 Purpose . 11
2.4.2 Constructors and destructor . 11
2.4.3 Access to properties . 11
2.4.4 Pattern management . 12
2.4.5 Word recognition . 12
2.4.6 Saving to a file . 12

2.5 class SampleAnalyzer . 12
2.5.1 Purpose . 12
2.5.2 Constructor . 13
2.5.3 Methods . 13

2.6 class ZeroCrossAnalyzer . 13
2.7 class CepstrumAnalyzer . 13

2

Chapter 1

Theories and algorithms of speech
recognition

1.1 Used symbols

Sn, Hn, Bn: n-th value (sample) of a digital discrete speech signal

1.2 Technical terms

phoneme: spoken sound, smallest language element (vocals, plosives, nasals, ...)
formant: phoneme–typical frequency maximum in frequency spectrum
sample rate: number of samples that are processed every second during playing/recording
sample: single discrete sound volume value
pattern: succession of vectors describing the features of a speech signal
pattern class: group of patterns that describe the same word spoken with different pronunciations

1.3 Component diagram

This diagram illustrates the steps and components of speech recognition. The detailed description
of all nontrivial components follows.

speaker ⇒ microphone ⇒ A/D transformation ⇒ signal analysis ⇒ word begin/end?

⇒ word pattern

recognition mode:
... comparison to reference patterns ⇒ word class

learning mode:
... assignment of word class name

1.4 A/D transformation

The transformation of an analogous speech signal into a digital one is done by a sound card. The
speech signal gets divided in small “time windows” (here 256 samples which corresponds to about
23 ms at a sample rate of 11,025 Hz) in which the signal (or precisely, its oscillation) can be
supposed to be approximately constant.

3

CHAPTER 1. THEORIES AND ALGORITHMS OF SPEECH RECOGNITION 4

1.5 Signal analysis

The purpose of signal analysis is to convert the speech signal into a discrete succession of “feature
vectors”, each of them representing and describing a time window. This feature recognition is
done to extract relevant information out of the speech signal and to sort out unnecessary data. A
direct saving of the speech signal would waste too much memory and CPU time. On the other
hand, many pieces of information of the speech signal like the development of the base frequency,
volume and redundancy (about 60% in English language) are not necessary for speech recognition.
Moreover, the speech signal depends on many factors like the speaker’s mood and utterance speed;
so the speech signal is no usable, general representation of a word.

I dealt with two different types of signal analysis: zero cross analysis and cepstral coefficients.

1.5.1 Zero cross analysis

An easy and very fast, but quite inaccurate algorithm is the zero cross analysis. I got its principle
from the documentation of an older speech recognizer (see source reference).

All zero passes over the time window (i. e. spots where the speech signal is zero) are searched.
The distance between two such points indicates the wavelength and with it the frequency (see
figure 1.1).

high
freq.

narrow distance

low frequency

wide distance

time signal

t

Figure 1.1: principle of zero cross analysis

However, to gain enough precision a high and low pass filter have to be applied to the speech
signal before since quiet high frequencies are “covered” by loud low ones and thus not generate
a zero crossing. After the high pass filter high frequencies can be registered, too. Figure 1.2
demonstrates this.

A simple high pass filter is differentiation of the speech signal. Wide wavelengths have virtually
no effect on the result, however wavelengths of high frequencies remain nearly constant:

H =
d

dt
S ⇒ Hn = Sn+1 − Sn (for discrete values dt = 1)

A band pass is used instead of a low pass because it is more precise. A bandwidth of 1 kHz
around a center of 500 Hz is used.

Bn = a Sn + bBn−1 + cBn−2 (for the first two coefficients: Bk = 0 ∀ k < 0)

The band pass coefficients are calculated as follows:

a = 1− b− c; b = 2e
−πB

F · cos
(

2πfc

F

)
; c = −e

−2πB
F

F is the sample rate, fc the center frequency and B the bandwidth. I use the values F =
11025 Hz, fc = 500 Hz and B = 1000 Hz.

CHAPTER 1. THEORIES AND ALGORITHMS OF SPEECH RECOGNITION 5

tt

unfiltered signal

t

signal after high passsignal after low pass

Figure 1.2: high frequencies are “covered” by low ones, so filtering is necessary

Although being quite precise, this band pass unfortunately cannot be used as high pass because
it cannot damp low frequencies acceptably well. But as low pass it proved quite suitable.

That is the whole preparation. Now, all zero crossing distances of the time window are de-
termined and assigned to one of eight frequency ranges. Thus a feature vector consists of eight
numbers indicating which kind of frequencies are present in the time window. This simple fre-
quency bank analysis can be calculated so fast that it even can be used on an ancient XT computer,
but it proved successful in both my and other speech recognition systems.

I used the following frequency ranges: 0–200, 200–400, 400–700, 700–1000, 1000–1800, 1800–
2600 and 2600–5000 Hz. This roughly corresponds to the areas of the human formants.

According to word length an adequate number of feature vectors are put together, resulting in
a word pattern.

1.5.2 Cepstral coefficient analysis

First, a spectral analysis is applied on the time window. The resulting complex spectrum is
normalized by calculating its magnitude. Due to this process, only n/2 of n coefficients are
relevant since the following ones are just mirroring the first half spectrum and, since the sample
consists of discrete values, frequencies higher than half of the sample frequency cannot appear
anyway. They are just set to 0 to ease calculation.

The k-th coefficient of a DFT (Discrete Fourier Transformation) for a time window containing
N samples is calculated as follows:

Dk =
1
N

N−1∑
n=0

sn · e 2πink
N (i: imaginary unit)

This formula is of little practical use because ei ϕ cannot be calculated directly. But since only
the magnitude of the coefficient is of interest, the formula can be transformed to:

ei ϕ = cos ϕ + i sin ϕ ⇒

Dk =
1
N

[
N−1∑
n=0

sn cos
(

2πnk

N

)
+ i

N−1∑
n=0

sn sin
(

2πnk

N

)]

|Dk| = 1
N

√√√√
[

N−1∑
n=0

sn cos
(

2πnk

N

)]2

+

[
N−1∑
n=0

sn sin
(

2πnk

N

)]2

This formula is used to calculate the necessary N/2 spectral coefficients. Nevertheless, this
algorithm is very CPU intensive (n2 summations must be made for n coefficients). There is

CHAPTER 1. THEORIES AND ALGORITHMS OF SPEECH RECOGNITION 6

a modified algorithm called FFT (Fast Fourier Transformation) that allows carrying out the
spectrum calculation considerably faster: the sample values are segregated into an odd and an
even sequence (i. e. the first sequence contains the 1st, 3rd, 5th, ... sample and the second contains
the 2nd, 4th, 6th, ... sample). The FFTs of both sequences are calculated and their results are
combined into one (the actual spectral coefficient) using another formula I unfortunately do not
know. So the number of summations reduces to 1

2n2. But that is just the start: the algorithm can
be applied recursively, e. g. the partial sequences can be split in parts again. If the number of
sample values in the time window is a power of 2, this sequence splitting can be done log2 n times;
so the number of summations can be reduced to n · log2 n which is a major saving compared to
the initial n2.

The so–called “cepstrum” (this word is formed by scrambling the word “spectrum”) is now built
from the spectrum by logarithmizing the spectrum and doing an inverse DFT/FFT. The formula
of the inverse DFT differs from the DFT formula only by the absence of the factor 1

N , so the same
FFT routine can be used. The first 10 to 16 cepstral coefficients are used as feature vector. They
indicate the magnitude of the highest “quefrencies” which reflect the formant structure.

1.6 Recognition of word boundaries

The spotting of word boundaries can be done manually or automatically.
The manual method is by far the simplest and also safest method. While speaking, the user

has to press a key. The disadvantage of this method is, of course, that it is relatively inconvenient
and the key pressing must match the actual spoken word quite precisely. Otherwise there are
either long phases of silence (although they can be compensated quite well by the nonlinear time
adaption), or, even worse, parts of the word get cut off.

An automatic word boundary detection is no easy task to carry out with simple means. For a
really sophisticated and usable one a good microphone and quite much CPU power is needed and
an advanced algorithm must be used. Nevertheless I dealt with quite an easy one, but more for
experimental purposes.

A good indicator whether or not a word is spoken at the moment is the signal energy

E =
N−1∑

k=0

S2
k

As long a the energy of the current time window exceeds a threshold a word is spoken and gets
analyzed.

However, checking only the signal energy is not sufficient. Sounds like noise and friction
phonemes (s, z, f, h, ...) or plosives (b, p, d, t, ...) that produce only a small signal energy would
be cut off at the beginning and end of the word and within it they would be misinterpreted as
word end. The latter problem cat be avoided by a pause threshold that defines how long zones of
low signal energy may be.

To detect such phonemes at the word boundaries, the zero crossing rate is used:

R0 =
N−2∑

k=0

sgn(Sk · Sk+1) ; sgn(x) =
{

1 for x < 0
0 for x ≥ 0

If the rate exceeds a threshold a provisional word begin is set. If the signal energy also exceeds
its threshold later the word is accepted; otherwise the word begin is canceled.

The same strategy is followed at the end of the word: after the signal energy goes below its
threshold, recording continues until the zero crossing rate also falls below the minimum.

Another threshold can be defined that indicates the minimal signal energy the zero crossing
rate is tested at. This prevents looking upon low–energy background noise as word begin. This
threshold should be very low to remain able to detect phonemes like ‘f’ or ‘s’ as word start.

CHAPTER 1. THEORIES AND ALGORITHMS OF SPEECH RECOGNITION 7

This procedure allows detecting word boundaries with a reasonable reliability. But it is quite
susceptible for continuous background noise (that already produces quite a high zero crossing
rate) and short, loud noises like keyboard strokes, knocks, etc. The latter can be often, but hardly
completely, avoided by a minimal word length.

In learning mode it is strongly recommended to use the manual mode. The thresholds for the
automatic mode have to be adjusted according to background noise level and even more to the
used sound card and microphone.

This point requires enhancements urgently. The manual method is uncomfortable and requires
some sure instinct to handle and the automatic procedure presented here is more a gamble than
a reliable robust solution.

1.7 Word patterns

In recognition mode the resulting word pattern is compared against the reference patterns (see
next section). In learning mode the new pattern is added to the reference pattern database (after
assigning a proper name). In learning mode it is advisable to teach several samples of the same
word (depending on similarity to other word classes about five to ten) to make the recognition of
different pronunciation variants safer.

1.8 Comparison with reference patterns

A recently recorded word has to be matched to a word class from the reference pattern database.
To do this it has to be compared to all reference patterns, i. e. the distances to all of them have
to be determined. The reference pattern having the smallest distance to the recorded word is
considered as the recognized one. But if even the smallest distance is still bigger than a refuse
threshold, the word is rejected as not recognized.

The smaller the refuse threshold, the better gets the correct–hit rate, but the more words are
refused. It has to be adjusted according to the particular application, but also to the extent of
the vocabulary (i. e. the number of word classes).

To be able to compare two patterns, their lengths have to be equalized first. This procedure
is called “time adaption”. Two different strategies are presented below.

1.8.1 Linear time adaption

This method just stretches, respective shrinks the pattern in a linear way to a size that matches
the other. This can be done very quickly but does not lead to usable results for speech recognition
because single word parts may be uttered at different speeds and pauses at the word boundaries
may also be different. Therefore I implemented the nonlinear time adaption (also called “dynamic
programming”) that does not have these shortcomings.

1.8.2 Nonlinear time adaption

The goal of this algorithm is to determine a “path” through the word pattern along which the
distances of the feature vectors get minimal. Thus, two or even more time windows of the word
pattern can be projected to one window of the reference pattern (which means that the word has
been stretched at this point) and also the other way round. No time window must be jumped over
though, and the way must not run “backwards”.

For a better visualization, the patterns are displayed in a diagram with the test pattern ex-
tending along the x–axis and the reference pattern going upwards (see figure 1.3). Hence, to get
from one point to the next there are three possibilities: straight upwards (which means projecting
two reference pattern windows to one of the test pattern), straight to the right (which means just
the opposite) or diagonally up right (which means that the speed of both patterns are equal at
this point). Finding this way is not very difficult if a recursive algorithm is applied. However,

CHAPTER 1. THEORIES AND ALGORITHMS OF SPEECH RECOGNITION 8

test pattern
t

t
re

fe
re

nc
e

pa
tte

rn

optimal path

Calculation step

Figure 1.3: Visualisation and possible path

since there are already millions of different paths even for quite small patterns, this would last far
too long.

But the precise knowledge of the path’s course is actually not necessary. The only thing
of interest is the (minimal) distance between the patterns, so a trick can be applied: In every
step (towards the end of the reference pattern) the current minimal distance up to this point is
calculated for every point of the test pattern. It is saved cumulatively in a field. To get from one
step to the next, the three feature vector distances (for every possible direction) to the current
reference pattern vector are calculated for every test pattern vector. The smallest of the three
distances is added to the current minimal distance array. This is done until the last reference
pattern vector is reached.

As a consequence you don’t need to calculate every single path since the ones that cannot be
the optimal one are sorted out as early as possible. Additionally, an iterative algorithm can be
used. This saves a lot of calculation time.

1.8.3 Distance between feature vectors

There are several ways to define a distance between two feature vectors ~f and ~g. The most obvious
one may be

D(~f,~g) =
n∑

i=1

|fi − gi| ; ai : i-th element of an n–dimensional vector ~a

which means the sum of the vector element differences. This works quite well. But the modified
form

D(~f,~g) =
n∑

i=1

(fi − gi)2

is more adequate for a purpose like speech recognition since it amplifies big distances and
tolerates small ones (which appear almost every time).

Chapter 2

Interface of sprec

2.1 Overview

The library was designed to be as portable as possible. It is written in ANSI C++ and does not
use any compiler or platform specific features. It just requires an ANSI C++ compliant compiler
and the classes vector and string of the STL1.

The library (its header file sprec.h in particular) declares classes for managing a pattern
database (for handling trained reference patterns) and for signal analysis.

2.2 Global declarations

Beside the classes there are a few global declarations:

• enum PDBIOResult is an error code returned by the file operations of the pattern database.
The meaning of its possible values are documented in sprec.h and in a later section of this
document.

• PATREFUSED is a constant that may be returned when recognizing a word. It indicates that
the pattern to be recognized was refused since even the distance to the closest reference
pattern exceeded the refuse threshold.

2.3 class Pattern

2.3.1 Type definitions

Vector represents a feature vector. It is an array of Elements (which are chars by now).

2.3.2 Constructor and destructor

Pattern’s constructor has the following form:

Pattern (unsigned _vectorSize, const string& _name = "");

It constructs a new pattern object with the given vector size (depends on the used signal analysis
type) and name. It is not necessary that the name is unique. It even may be desirable to have
several patterns with the same name if different pronunciation variants of the same word are
trained (and this indeed should be done!). The constructor does not yet allocate memory for
feature vectors (initially the object contains 0 vectors). This must be done afterwards by calling
NewData().

1ANSI C++ Standard Template Library

9

CHAPTER 2. INTERFACE OF SPREC 10

The destructor destroys the pattern and the allocated memory for the pattern vectors (if
existing).

2.3.3 Access to properties

• string Name() returns the name of the pattern.

• void SetName (const string&) changes the pattern’s name.

• unsigned VectorSize() returns the size (dimension) of the feature vectors of this pattern.
It depends on the used signal analysis type and was set in the constructor.

• unsigned nVectors() returns the number of vectors this pattern consists of.

• unsigned DataLength() returns the size of allocated memory for the pattern data. Practi-
cally it is the vector size times the number of vectors.

A pattern has two additional reserved fields of type long int which can be used to store
any additional data an application may need. These fields are not modified by sprec but by
PatternDB::SetPatReserved () (see below). They can be modified and retrieved by:

• void SetReserved1 (long)

• void SetReserved2 (long)

• long Reserved1 ()

• long Reserved2 ()

2.3.4 Feature vector management and access

• void NewData (unsigned dataLen) has to be called every time the size (not the content)
of the pattern should be changed (this is also required directly after the constructor call). It
allocates pattern memory for dataLen Elements (not vectors!). If there is already pattern
data it is deleted first.

• If a single Element of a particular vector should be read, the () operator can be used very
comfortably. Its two parameters are the number of the desired vector and the number of the
element of this vector. E. g. to read the 3rd element of the 4th vector the following code is
used:

Element e = myPattern (4, 3);

Attention: the parameters have to be valid! The method does not check them.

• Vector AccessVector (unsigned vector) must be used if an Element should be modified
or a complete vector (Element array) is to be accessed. The returned Vector can be used
like an array. Attention must be payed when using this method: it does not check whether
the given vector number does really exist and the returned vector is just a C pointer and
therefore must be handled with care.

2.3.5 File I/O

• PDBIOResult Load (FILE*)

• PDBIOResult Save (FILE*)

CHAPTER 2. INTERFACE OF SPREC 11

These two methods load, respectively save the pattern in the given file. They return an error
code indicating success (PDB OK) or the reason of failure. When loading, this may be PDB EOF
which means that the file ended unexpectedly (there is no complete pattern in it). When saving,
PDB DISKFULL indicates that the pattern could not be written completely because the file cannot
grow any more (the storing device got full).

Normally, these methods are not called by the user, but only by the pattern database.

2.4 class PatternDB

2.4.1 Purpose

The class PatternDB manages a list of patterns (objects of class Pattern) which form a reference
pattern database. The list is sorted alphabetically after the names of the patterns. It provides
loading and saving of the patterns and has also methods for calculating the distance between two
patterns and for finding the closest match to a given test pattern (the actual word recognition).

PatternDB has three additional properties: a database name, a refuse threshold and an array
of 16 reserved bytes which can be used freely to store any additional data an application may
need.

2.4.2 Constructors and destructor

• PatternDB (const string&) initializes a new pattern database with the given name. Ini-
tially it contains no patterns. The recognition threshold is set to 120 (this value should
be adapted to suit the application’s needs and also the used signal analysis type) and the
reserved field is cleared to zero.

• PatternDB (const string& fName, PDBIOResult&) loads a pattern database from the file
with the given name. It reads the database name, the refuse threshold, the reserved fields
and all patterns the database contains. An error code is returned through the PDBIOResult
variable. When the constructor finished it can have the following values:

– PDB OK: The loading was successful.

– PDB NOTFOUND: A file with the given name does not exist.

– PDB NOPDB: The file is no pattern database or is damaged.

– PDB EOF: The file ended unexpectedly before all patterns were read. This means that
the file is damaged.

PatternDB’s destructor destroys all patterns that are stored in it.

2.4.3 Access to properties

• string Name() returns the name of the pattern database.

• void SetName (const string&) changes the pattern database’s name.

• unsigned RecogThreshold () retrieves the refuse threshold.

• void SetRecogThreshold (unsigned) modifies the refuse threshold.

• void* Reserved () provides access to the reserved field. As already stated, the returned
pointer points to an array of 16 bytes!

CHAPTER 2. INTERFACE OF SPREC 12

2.4.4 Pattern management

• unsigned Add (Pattern*) inserts the given pattern into the database at the proper lexical
position. Responsibility is taken over for the object, i. e. it gets destroyed in PatternDB’s
destructor and must not be shared between several databases. Directly after the pattern
is inserted, the protected method SetPatReserved (Pattern*, unsigned) is called which
should be overridden in derived classes if the reserved fields of the patterns are used and are
to be set after inserting. PatternDB’s implementation just sets them to zero. The passed
parameters are a pointer to the new pattern and the assigned index. This index is also
returned by Add.

• void Del (const string&), void Del (Pattern*), void Del (unsigned): If a pattern
should be deleted, it can be identified by three different references: its name, object pointer
or its position (index) in the database. Hence there are three overloaded versions of the
deletion method.

• unsigned nPatterns () returns the number of patterns stored currently in the database.

• The [] operator is used to access the patterns (it returns a Pattern& reference).

2.4.5 Word recognition

• unsigned Distance (Pattern&, unsigned idx) calculates the distance between the given
pattern and the one in the database with index idx. It performs a nonlinear time adaption
(see section 1.8.2) to find the smallest distance.

• unsigned Recog (Pattern&, unsigned *diffs = NULL) does the actual recognition pro-
cess. The given pattern is compared with all patterns in the database. The one having the
smallest distance to the test pattern is considered as the recognized one and its index is
returned. If, however, its distance exceeds the refuse threshold, the constant PATREFUSED
is returned instead. If the diffs pointer is not NULL, the distances to every pattern of the
database are written into it (so it must be assured that the array is big enough). This may
be useful for the training process and also for adjusting thresholds.

2.4.6 Saving to a file

• PDBIOResult Save (const string&) writes the whole database into a file of the specified
name. It returns an error code which can have the following values:

– PDB OK: The saving was successful.

– PDB CREATE: The file could not be created; the device might be read–only.

– PDB DISKFULL: The file cannot grow any more and the data was not completely written;
the device might be full.

2.5 class SampleAnalyzer

2.5.1 Purpose

To support different methods of sample analysis with a common interface the abstract base class
SampleAnalyzer has been designed.

CHAPTER 2. INTERFACE OF SPREC 13

2.5.2 Constructor

SampleAnalyzer (unsigned _vectorSize, unsigned _windowSize = 256,
unsigned _sampleRate = 11025);

The first parameter, vectorSize, determines the number of elements of the feature vectors
this sample analysis method produces. The constructors of derived classes should set this para-
meter.

The “width” of the time windows (i. e. the number of sample values it contains) is controlled
by windowSize. It should be appropriate to the analysis method, the sample rate (which is given
by the third parameter sampleRate) and the desired resolution of the signal analysis (which may
affect the quality of recognition).

2.5.3 Methods

• unsigned VectorSize()

• unsigned WindowSize()

• unsigned SampleRate()

These three property accessors return the values set by the constructor.
static unsigned Energy (Sample, unsigned size) calculates the energy of the given sam-

ple.
The pure–virtual method virtual void AnalyzeWindow (Sample, Pattern::Vector) must

calculate a feature vector from the given time window. The sizes of the time window and the feature
vector were specified in the constructor. This is the only method that must be implemented by
derived “real” sample analyzer classes.

Pattern* Analyze (Sample, unsigned size) analyzes a complete sample by dividing it into
time windows and applying AnalyzeWindow(). It creates a new Pattern object that is returned.

2.6 class ZeroCrossAnalyzer

This derivative of SampleAnalyzer implements the zero–cross sample analysis described in sub-
section 1.5.1.

Its constructor, ZeroCrossAnalyzer (unsigned windowSize = 256, unsigned sampleRate
= 11025) forwards the parameters windowSize and sampleRate to the SampleAnalyzer con-
structor and sets the feature vector size to 8.

2.7 class CepstrumAnalyzer

This derivative of SampleAnalyzer implements the cepstrum signal analysis described in subsec-
tion 1.5.2.

Its constructor, CepstrumAnalyzer (unsigned windowSize = 256, unsigned sampleRate
= 11025) forwards the parameters windowSize and sampleRate to the SampleAnalyzer con-
structor and sets the feature vector size to 16.

