
Modeling and verification of security protocols

Part I:
Basics of cryptography and introduction to security protocols

Advanced seminar paper

Dresden University of Technology
Martin Pitt

email: mp809054@inf.tu-dresden.de

November 13, 2002

Abstract

This advanced seminar is about the design, modeling and formal validation of security protocols.
As the first presentation, this paper introduces the notions, explains the principles of crypto-
graphic definitions, algorithms, and pitfalls and deals with some example protocols together with
an overview of different validation techniques used today.

Contents

Preface 2

1 Aspects of security 3
1.1 Security properties . 3
1.2 Attacker models . 4
1.3 Limits of cryptography and security protocols . 5

2 Principles of cryptographic algorithms 6
2.1 Keys and why they are needed . 6
2.2 Symmetric systems . 7
2.3 Asymmetric systems . 8
2.4 Cryptographic hash functions . 9
2.5 Diffie-Hellman key exchange . 10

3 Security protocols 11
3.1 Notation of protocols . 11
3.2 Example protocols . 11
3.3 Examples of vulnerabilities and attack types . 13

4 Formal approaches 16
4.1 What formal verification can and cannot do . 16
4.2 Using general-purpose verification tools . 17
4.3 Developing expert systems . 17
4.4 Modal logic . 17
4.5 Algebraic approach . 18

Bibliography 19

1

Preface

Security protocols are a critical element of the infrastructures needed for secure communication
and processing information.

Most security protocols are extremely simple if only their length is considered. However, the
properties they are supposed to ensure are extremely subtle, and therefore it is hard to get protocols
correct just by informal reasoning and “eyeballing”. The history of security protocols (and also
cryptography) is full of examples, where weaknesses of supposedly correct protocols or algorithms
were discovered even years later. In Roger Needham’s remark ’they are three line programs that
people still manage to get wrong’.

Thus, security protocols are excellent candidates for rigorous formal analysis. They are critical
components of distributed security, are very easy to express and very difficult to evaluate by hand.

The seminar deals with formal analysis and validation of such protocols. This paper—being the
first in the seminar—introduces the matter by dealing with some well known standard protocols
and pointing out several formal analysis methods used today.

To design and/or verify security protocols, one needs to have at least a basic understanding
of cryptography since encryption and authentication algorithms are the basic blocks of protocols.
So this paper starts with a thorough introduction to the principles of cryptography, without going
into the mathematical details.

Martin Pitt
November 2002

Acknowledgements

First of all, I want to thank Prof. Horst Reichel, who is the coordinator of this seminar, for his
various interesting lectures I took until now. Due to him I learned that theoretical computer
science is by far not that dry it is generally supposed to be.

I also want to express my appreciation to Prof. Andreas Pfitzmann for his lectures “Basics of
data security” and “Cryptography”. His subtly provoking and never boring style of presentation
and his habit to let the students think and discuss first caused my interest in the matter and
sharpened my sense for dealing with both the mathematics and the physical realization of computer
and network security.

2

Chapter 1

Aspects of security

1.1 Security properties

When talking about “security”, “secure systems”, “authenticity”, the meanings of these words are
frequently taken as obvious and widely understood. But if you try to explain them in detail, you
may find it remarkably difficult to be precise in every desired aspect. Different people even have
different interpretations of some terms.

Thus, the first question somebody should ask when constructing a “security system” is: What
exactly do I want to protect? So we start with informal definitions of different aspects of security,
such that specifying required properties of a system (and also properties it need not have) can be
done using these new terms.

1.1.1 Secrecy

Secrecy—also called concealment or confidentiality—has a number of different possible meanings;
the designer of an application must decide which one is appropriate.

The strongest interpretation would be: an intruder is not able to learn anything about any
communication between two participants of a system by observing or even tampering the com-
munication lines. That is, he cannot deduce the contents of messages, sender and receivers, the
message length, the time they were sent, and not even the fact that a message was sent in the first
place.

In theory, this “perfect” secrecy can be approximated quite close by exploiting today’s crypto-
graphic tools: encryption and digital signatures, a lot of dummy traffic to keep a constant network
load, anonymizing proxies to “shuffle” packets across the nodes to make routing analysis infea-
sible, and a huge calculation overhead on the message recipients, since decryption and signature
checking must be performed with each possible key (since there is no sender or receiver name
attached). So for most practical applications this would neither be efficient nor necessary.

A very weak interpretation, which is used in today’s encrypted email communication, confines
secrecy to the actual content of messages. This may be the most important part, but especially for
very small messages it must be taken into consideration that an attacker learns something about
the exact (if a stream cipher is used) or approximate (with a block cipher) length of the message.
Additionally, depending on the controlled network area attackers can log a partial or complete
traffic analysis. But this approach can be performed with no useless overhead.

These two extreme situations point out that the designer of a distributed system must analyze
exactly which attributes of communication have to be concealed and which can go unprotected to
allow a more efficient implementation.

3

1.1.2 Authentication

A system provides strong authentication if the following property is satisfied: if a recipient R
receives a message claiming to be from a specific sender S then S has sent exactly this message
to R.

For most applications this formulation must be weakened, since in most cases communication
channels are subject to both technical errors and tampering by attackers. A system provides weak
authentication if the following property is satisfied: if a recipient R receives a message claiming to
be from a specific sender S then either S has sent exactly this message to R or R unconditionally
notices this is not the case.

Some authors make a distinction to the two aspects of authentication: a validated sender name
is referred to as “authentication of origin” and the fact that the message has not been altered in
any way is called “integrity”. But neither property alone increases the confidence to a message,
so both must always be present.

An additional property authentication systems can have is non-repudiation. This property
states that a recipient is not only confident that the message is authentic (sent by S and unmod-
ified) but can also prove this fact to a third party. In analogy to handwriting signatures these
systems are called digital signature systems.

1.1.3 Anonymity

A system that is anonymous over a set of users has the following property: when an user sends
a message, then any observer will be unable to identify the user, although he might be able to
detect the fact that a message was sent. Examples are an open discussion board or the prevention
of traffic analysis on web servers.

Sometimes it is not intended that the messages can be sent completely independent from each
other. In an electronic voting protocol, the property shall be constrained: every user can send
exactly one message anonymously, but the protocol must ensure that double votes can not occur
unnoticed. Either it is constructed in a way that it is impossible to vote twice or the offending
user’s identity is revealed in such a case.

1.1.4 Fairness

An application where fairness properties get important is electronic contract signing. A protocol
that achieves this must secure that the process of applying all contractor signatures is transactional.
That means, that e. g. the third contractor must not be able to halt the protocol in a way that
the first two signatures are already valid.

There are several protocols available which have to trade off the need of a trusted third party
against a lot of communications for incremental commitment.

1.1.5 Availability

This property may seem rather technical, but becomes vital in applications like distress signals,
emergency telephones or remote surgery. If a certain service is needed, it must actually be available.

Of course, cryptography can do only little to achieve this. Neither mathematics nor protocols
can help if an attacker just “cuts the wire”. Solutions (which can never be perfect, though)
comprise highly redundant networks, redundant nodes, or, in the case of alarms, absence triggers
(the alarm is caused if a periodic “no alarm” sensor signal is not sent any more).

1.2 Attacker models

Now, that we can talk about what we want to protect, we need to specify who to protect it from.
Clearly it is impossible to protect something from an almighty attacker. Such an attacker

could:

4

• gather all data he is interested in right at their origin, thus preventing confidentiality (se-
crecy)

• break integrity by unperceivedly modifying data, because if the user would always know
which value they should have, he would not need them at all

• foil availability by destroying the whole system.

Thus, a system can not plainly claim to be “secure”, but must instead specify against which
type of attacker.

Since nobody can know what technology will be available in ten or fifty years, specifying the
capabilities of attackers is by far not easy and always an estimation. Taking this into consideration
it is only helpful to overly exaggerate at this point: an allegation to be “secure against an attacker
who is bound by the currently known physical laws and has at most 10,000 times of today’s globally
available calculation capacity” is concrete and explicit and can—at least theoretically—be proved.

Another important point is the amount of control an attacker can potentially have on a system.
Again, it is impossible to defend to an omnipotent attacker. Every kind of security needs a physical
support; it is not possible to “create” security from scratch. According to the author’s knowledge,
it is currently not possible to read or influence higher functions of a human brain, so at least we
can trust our own mind.

But in practical applications one would not want to perform all calculations and protocols
just with our mind; usually machines are used for this purpose. But this extends the ultimate
trust (the physical support) to all machines a participant uses to act in a system, thus confining
the attacker’s allowed area of influence. This statement may sound trivial, but this is the point
where most systems are broken, since it is usually their weakest part. A popular example may be
online banking: for an attacker it would be incomparably difficult to try to invest vast amounts
of technology and time to break a sophisticated algorithm; if one examines the vast majority of
today’s home computers, it would certainly be enough to send to the victim an email that silently
installs a Trojan horse that logs all passwords, transaction numbers and anything else the attacker
is interested in.

An usual goal at this level would be: every participant has its own ultimately trusted device he
uses to participate in a distributed system, and the complete network is subject to observation and
modification by attackers. Some protocols may also need further constraints, but the important
part is, that all assumptions and constrains are explicitly defined and stated.

1.3 Limits of cryptography and security protocols

Cryptographic science developed algorithms providing encryption and authentication. Some of
these algorithms can formally be proved, others have been used for decades without revealing
severe weaknesses. Out of these building blocks, security protocols can achieve goals like secret key
exchange and fairness whose security can also be proved using the correctness of the cryptographic
algorithms.

But all these considerations do apply to mathematical level only. When a security system is
built, the algorithms get instantiated and refined in soft- and hardware which introduces many
new aspects and side effects not covered by the abstract mathematical model.

As an example, chip cards are widely thought of being secure due to the inaccessibility of
the hardware. But in fact, there were very successful attacks on these chip cards by measuring
their power consumption that directly depends on its calculations. Similarly successful approaches
include the measuring of execution times and the remote recording of electromagnetic emissions,
which allow to reconstruct a monitor’s display and keyboard activities from a distance of several
meters. A third example are covert channels which can leak confident information to attackers.

5

Chapter 2

Principles of cryptographic
algorithms

2.1 Keys and why they are needed

In every distributed system there must be something that distinguishes the legitimate recipient
from all other participants. In cryptographic systems, this feature is the knowledge of a specific
secret.

In earlier times it was common to negotiate a non–disclosed algorithm between the persons
wanting to communicate securely. Even today it occurs from time to time. But this approach has
several deficiencies:

• Most of these algorithms were cracked quite easily since conceiving a really secure one is
very difficult

• If a third party (e. g. a cryptologist) was engaged to do this job, he was a potential risk
afterwards. Due to this, many capable cryptologists “accidentally” disappeared from this
world...

• There is no chance to analyze the algorithm thoroughly since every person that could do
this would certainly suffer the same fate as in the last point.

• As the number of participants grow, it gets very hard to conceive enough algorithms.

We see that it is best to use just one algorithm that is publicly documented and available, and
can thus be studied thoroughly, normed, and implemented in masses.

But then, such an algorithm needs to have a certain parameter (called “key”) to provide the
unique feature for the distinction of participants. These keys must have some important properties:

• Their creation must be based on a truly random number.

• The number of all possible different keys must be many magnitudes higher than the number
of participants (a factor of 2100 is by no way too much). This prevents that two keys are
accidentally identical and minimizes the possibility of a right guess.

• The relationship of a key to his owner cannot be secured by any technique, but must be
verified by first-hand knowledge. With open algorithms, every person is able to create keys
with any name attached to them!

• A basic maxim is that the whole system can be at most as good (or bad) as this initial key
generation!

6

2.2 Symmetric systems

Up to the advent of asymmetric systems in 1976, all cryptography was symmetric. Their history
is already several thousand years old; one of the earliest famous ciphers is the Caesar chiffre which
works by rotating the letters of the plaintext by a previously agreed number of characters.

The most common systems used today are the one-time-pad concealment system (also known
as Vernam Chiffre) and their counterpart, the authentication codes, the ubiquitous DES (Data En-
cryption Standard) and its designated successor AES (Advanced Encryption Standard). Detailed
descriptions can be found in [Pf00].

2.2.1 Notational conventions and symbols

X set of all plaintext messages
C set of all ciphertexts
S set of all signatures
K set of all symmetric keys

kAB ∈ K a specific key belonging to A and B

2.2.2 Working principle

Symmetric systems are characterized by the fact that encryption and decryption, or signing and
testing, respectively, are performed with the same key.

Concealment
Algorithms:
encrypt : X ×K → C
decrypt : C × K → X

Symmetry and injection condition:
∀k ∈ K, x ∈ X . decrypt

(
encrypt(x, k), k

)
= x

Sending an encrypted message from A to B:

• encryption: A chooses a message x ∈ X
and calculates c = crypt(x, kAB)

• transfer: c is now sent to the recipient (and
possibly to observers and attackers)

• decryption: since—apart from A—only B
knows kAB , only he is able to calculate
x = decrypt(c, kAB)

Authentication
Algorithm:
sign : X ×K → S

Sending a signed message from A to B:

• signing: A chooses a message x ∈ X and
calculates s = sign(x, kAB)

• transfer: x; s is now sent to the recipient
(and possibly to attackers)

• receiving: B receives a message x′; s′ (ei-
ther the original or modified by attackers)

• test: B now calculates s′′ = sign(x′, kAB);
if s′′ = s′, the message is valid. Since—
apart from A—only B knows kAB , nobody
can alter the message to x′ and fake a cor-
rect signature s′ for it.

2.2.3 Key distribution

Before two participants can use these algorithms, they must agree to a common symmetric key to
use between them. If the participants are two humans and have the chance to meet each other to
exchange a floppy disk or CD-ROM, then this process is uncritical.

Problems arise if the participants cannot meet. They may not know each other personally, live
too far away from each other, or the participants are just machines. Then the support of a third
party is needed which both participants trust. The exchange must be:

• secret: only the two participants (and possibly the trusted third party) must get to know
the key values

7

• authentic: the protocol must ensure that the keys cannot be modified underway, or after
receiving the keys, the participants must verify the equality afterwards.

A protocol that achieves this is the “Needham-Schroeder-Secret-Key” protocol (NSSK) which
is described in section 3.2.2. This also solves the problem of key explosion: in a system with n
participants, at most n(n−1) keys are needed in the worst case (if everybody wants to communicate
with everyone else and an one time pad is used), so the number of keys grows quadratically.

2.3 Asymmetric systems

The first paper that introduced this class of systems was published in 1976 by Diffie and Hellman.
They described a protocol that enabled two participants to derive a common secret key solely from
publicly available information; it is described in more detail in section 2.5. In 1978 another paper
was published by Ronald Rivest, Adi Shamir and Leonard Adleman who described the famous
RSA algorithm.

All asymmetric systems are based on a mathematical “one-way” function, i. e. an operation
that can easily be done in one direction, but whose calculation of the reverse is (assumed to be)
virtually intractable. Practically there are only two that are used and well-studied:

factorization: it is easy to take two different large prime numbers p and q and calculate their
product n = p ·q. But in spite of several centuries of research, no efficient algorithm is known
to calculate the two prime factors of n.

discrete logarithm: taking an exponent is easy in finite fields, i. e., given two numbers a, x, and
a prime p it is easy to calculate y = ax(mod p). But on the other hand, there is no known
algorithm that, given y, a, and p, can efficiently determine x.

But one must be aware of the fact, that these two are really just well-studied conjectures and
cannot be proved or refuted by now.

These conjectures can be used to construct public key cryptographic systems. There, every
new participant generates two keys: a secret one which he must never tell anyone else, and a
public key that can and should be spread as widely as possible. The public key can be used to
encrypt messages or test their authenticity, whereas decryption or signing can only be done with
the secret key.

The advent of such systems can be regarded as the breakthrough of “cryptography for the
masses”, since almost all problems of symmetric key exchange (but the validation of the relation
owner – key) fell away.

The first publicly available open source program for asymmetric cryptography was Phil Zim-
mermann’s “Pretty good privacy” (PGP), whose newer versions unfortunately went commercial
today. The open source counterpart is the “GNU privacy guard” (GPG) which is mostly compat-
ible with PGP and open source, so its correctness can be verified by everyone.

2.3.1 Notational conventions and symbols

X set of all plaintext messages
C set of all ciphertexts
S set of all signatures

PUB set of all public keys
SEC set of all secret keys

pubA ∈ PUB specific public key of participant A
secA ∈ SEC specific secret key of participant A

8

2.3.2 Working principle

Concealment
Algorithms:
encrypt : X × PUB → C
decrypt : C × SEC → X

Injection condition:
∀x ∈ X . decrypt

(
encrypt(x, pubA), secA

)
= x

Sending an encrypted message from A to B:

• encryption: A chooses a message x ∈ X
and calculates c = encrypt(x, pubB)

• transfer: c is now sent to the recipient (and
possibly to observers and attackers)

• decryption: since only B knows secB , only
he is able to calculate x = decrypt(c, secB)

Authentication
Algorithm:
sign : X × SEC → S
test : X × S × PUB → {correct,wrong}

Creating a signed message by A:

• signing: A chooses a message x ∈ X and
calculates s = sign(x, secA)

• transfer: x; s is now sent to all desired re-
cipients (and possibly to attackers)

• receiving: a participant B receives a mes-
sage x′; s′ (either the original or modified
by attackers)

• test: B now checks if test(x′, s′, pubA) =
correct. Since only A knows secA, nobody
can alter the message to x′ and fake a cor-
rect signature s′ for it.

Note that now not only one receiver can check signatures, but everyone knowing A’s public
key (which anyone can get, though). Thus, asymmetric authentication provides a digital signature
system, since it has the property of non-repudiation.

2.3.3 Disadvantages

If public key cryptography has so many advantages, then why not forget about those “old” sym-
metric systems? Unfortunately asymmetric systems also have some shortcomings which still (and
will forever) justify the existence of the symmetric ones:

• They require extensive mathematical calculations, about 103 to 105 more than symmetric
systems. So they are inapplicable on small embedded systems that have very limited memory,
calculation speed and/or power supply.

• Given enough calculation capacity they can be cracked easily even without intercepting a
single “real” message: since an attacker knows a public key, he can encrypt as many messages
he wants and search the private key that decrypts it back. A similar approach works for
authentication.

• The truth of the used conjectures cannot be proved by now. To the contrary, the development
of new and faster algorithms went much faster than the development of computation power.

2.4 Cryptographic hash functions

Generally, a hash function maps an input of arbitrary length to an output of fixed length. In
cryptography, one application is the reduction of calculation needed for digital signatures: instead
of signing the whole message (which can be several MB or even GB long, if binary files such as
videos or programs are to be signed), the message’s hash code is calculated first and this hash
code gets signed then.

Widely known and easy hash functions are parity bits and CRC sums. They are well-suited
if they only need to detect accidental corruption due to technical flaws or noisy communication

9

channels. But since it is very easy to modify a message in a way that it has the same parity/CRC
value as the original, they cannot be used in cryptography.

Hash functions that have the property that it is intractably difficult to find two messages that
produce the same hash code, and thus it is even more difficult to find another message to a given
hash value, are called “collision resistant”. Detailed examples and proofs can be found in [Pf00].

2.5 Diffie-Hellman key exchange

Since the understanding of this method is necessary for dealing with some protocols, the idea is
described in brief. As already explained earlier, it enables two participants to calculate a common
symmetric secret key solely from public information, and of course, their own knowledge. The
algorithm exploits the discrete logarithm assumption and the commutativity of exponentiation.

All calculations are made in a finite field. A modulus p and a primitive Element a are publicly
known and can be the same for all participants. (A primitive element is an element that generates
the whole field by successive exponentiation.)

The participants X and Y randomly choose their own secret keys x, and y respectively. Because
of the discrete logarithm assumption, the values ax and ay can be published as public keys.

Now the participants can calculate the shared secret key k = (ax)y = (ay)x = axy.
The security of the scheme can be enhanced by having each participant choose his own p and a

(which then get part of their public keys). This defeats the most powerful attacks to this method,
which involve pre-calculated large lookup tables for speeding up logarithm calculations.

10

Chapter 3

Security protocols

Now it is time to use the building blocks established in the previous chapters to construct protocols
using them.

The meaning of “protocol” is taken as usual: a prescribed sequence of interactions between
entities designed to achieve a certain goal and end. Security protocols in particular shall provide
security properties of distributed systems, that were already described in section 1.1.

3.1 Notation of protocols

A pretty compact and easy-to-write form that is widely used is the list notation. A protocol is
formulated as a sequence of messages, together with the names of the sender and receivers:

Message n a → b : data

The message content data can be composed of:

atoms: This may be names, variables and literal constants.

nonces: A nonce, usually notated like nA, is an unpredictable, freshly generated unique number.
The subscript indicates which participant created it, but that is just a notational convenience.
In the real protocol there is no attached name tag or something similar that indicates its
creator.

encryption: The term {data}k denotes the encryption of data with the key k.

authentication: Signk(data) denotes the signature of data using the key k.

concatenation: a.b denotes the concatenation of a and b, i. e. the two terms are sent consecu-
tively.

3.2 Example protocols

In the following, three protocols are described which are widely used in practical systems today.
But note, that no protocol is completely secure against all types of attacks presented in section
3.3. Finding such attacks is the purpose of formal validation, which the subsequent presentations
are designated for.

11

3.2.1 Challenge-Response

This protocol has the purpose of verifying that two parties A and B share a common secret key
k without revealing it. It is commonly after a key exchange to assure that the keys were not
modified either accidentally or by an attacker:

1. A→B: nA

2. B→A: {nA}k.nB

3. A→B: {nB}k

After receiving the first message, B encrypts the nonce with his version of k and sends it back.
Now A can decrypt it again and compare the result to the number he originally sent. If they
match, then under the assumption that k is not known to any attacker, A can be sure that B has
the same k as he has. The challenging is then performed the other way round for convincing B of
the fact.

3.2.2 Needham-Schroeder Secret Key

The NSSK protocol is one of the earliest protocols that enables two participants to establish a
common secret key using only symmetric cryptography and a trusted third party. It is the basis of
the well-known Kerberos authentication and—apart from a subtle vulnerability that is discussed
in the succeeding presentations—stood the test of time.

As a preliminary, all participants X share pairwise distinct secret keys SX with a central
trusted party S (server). Apart from this, no other keys need to be stored permanently. This
scenario stems the key explosion problem and makes adding and deleting participants easy.

If two participants A and B want to communicate securely with each other, they must first
establish a common secret session key kAB between them using the following protocol:

1. A→S: A.B.nA

2. S→A:
{
nA.B.kAB .{kAB .A}SB

}
SA

3. A→B: {kAB .A}SB

4. B→A: {nB}kAB

5. A→B: {nB − 1}kAB

A step-by-step walk-through follows:

1. A tells S that it wants to talk with B and supplies a nonce. Note that this information is
not concealed, so it is both subject to observation and modification.

2. S now generates a fresh session key kAB for A and B and answers with protocol step 2.

3. A can decrypt this answer using its server key, obtaining nA.B.kAB .{kAB .A}SB . A should
verify that nA and B match the values from step 1 to preclude modifications. The last part
that A cannot decrypt is forwarded to B.

4. B can decrypt the data using his server key, obtaining the session key and the partner’s
name.

5. Step 4 and 5 form a simplified challenge response authentication to verify the integrity and
equality of kAB .

NB! This protocol assumes that encrypting a concatenation of elements together has the effect
of binding them together, i. e. that encrypted data can not deliberately modified in a way that
only a specific part (e. h. a participant name) is affected. This is an integrity property which
encryption algorithms are not designed for in the first place! It works if a block cipher like DES
is used in conjunction with an appropriate operating mode (like cipher block chaining). But a
counterexample which fails spectacularly is the one time pad: although its secrecy is absolute,
every single bit can be modified independently.

12

3.2.3 Station-To-Station

This protocol also provides the establishment of a common secret key between two participants,
but without the need of a trusted third party. It is based on Diffie-Hellman key exchange (see
section 2.5 on p. 10), but uses a (previously established) signature system for authenticating the
public keys:

1. A→B: ax

2. B→A: ay.{SignB(ay.ax)}k

3. B→A: {SignA(ax.ay)}k

A short explanation follows:

1. A chooses a random x and computes ax(mod p), which is sent to B.

2. B chooses his own random y and can compute the common secret key k = (ax)y = axy now.
The data according to protocol step 2 is now sent back to A.

3. A has received ay and thus can calculate k = (ay)x = axy himself. But until now there is no
guarantee that the messages were authentic.

Using the freshly generated k A can decrypt the second part of the message to obtain B’s
signature of (his version of!) the public keys. This signature can now be checked against
A’s version of ax and ay.

Now A sends back the signature of the public keys to B, so that B can verify their integrity
on his own.

3.3 Examples of vulnerabilities and attack types

3.3.1 Man in the middle

This style of attack involves the intruder I imposing himself between the communications between
two participants A and B. This can always happen if the messages, or even worse, the keys are
not properly authenticated. The attack enables I to masquerade as B to A (or vice versa).

As a first example, lets consider a rather naive protocol for “secure” asymmetric communication
between A and B where no participant would even need to know the other’s public key. This works
for asymmetric ciphers that are commutative (like RSA):

1. A → B: {X}pA
(message X encrypted with A’s public key)

2. B → A: {{X}pA
}pB

(B cannot decrypt the message, but further
encrypt it with his own public key)

3. Due to the commutativity {{X}pA
}pB

= {{X}pB
}pA

, A can strip
off his own encryption and send back
A → B: {X}pB

(B is now able to decrypt it)

All encrypted messages look pretty much alike: equally distributed random numbers, so the
problem is that A would never know whether it was really B who received and further encrypted
the message. If an I intercepts the first message, he can equally well apply his own public key and
send back {{X}pA

}pI
to A. A will duly strip off his own encryption and sends back {X}pI

to I
which he can decrypt with ease.

If I wants to, he can perform the same protocol with B now to let B also receive the message.
In this case, neither A nor B recognize the eavesdropper in between (apart from a slight time
discrepancy that they probably will ignore).

This rather stupid protocol is really just an academic example to demonstrate the principle.
In practical applications the initial key exchange is the most susceptible part to this attack. Their
authenticity must always base on first-hand knowledge and cannot be gained with any clever
protocol.

13

The initial key exchange plays the role of the “physical support” every security must be based
on. From time to time there are people exchanging public keys via email. Every attacker is able
to generate keys with any name tags attached to them and send them to anyone, claiming to be
a friend. This is the point where man-in-the-middle attacks get successful.

3.3.2 Mirror

This attack, which is also known as “reflection”, has its name from the trick to let a participant
answer his own questions. The challenge-response protocol described above has such a weakness.

Suppose, there is a server S (e. g. a mainframe) which several clients (terminals) can log on.
Authentication is done with challenge-response to avoid sending passwords through the possibly
observed connection and also provide the authentication of the server.

If the system permits several parallel login procedures (which may not be unusual on big
servers), an attacker A can fool the server with a second “dummy” session A′:

1. A → S: nA (first login request)
2. S → A: {nA}k.nS (attacker cannot encrypt nS by now)
3. A′ → S: nS (second “dummy” login request)
4. S → A′: {nS}k.n′

S (attacker got encrypted nS and abandons this session)
5. A → S: {nS}k (taken from the last answer)

Solutions would be to make the login protocol atomic (no interleaved parallel logins) or to
refuse encrypting nonces that was just sent out for client authentication. It does not help to let
the client authenticate itself first, since then an attacker could authenticate itself as the server
using the same trick.

3.3.3 Interleave

Here the attacker uses several parallel runs of a protocol to exploit their interactions. An example is
the Needham-Schroeder public key protocol, which was believed to provide mutual authentication
and secret exchange of two nonces (which could be used as symmetric session keys):

1. A → B: {A.nA}pB

2. B → A: {nA.nB}pA

3. A → B: {nB}pB

The protocol was even analyzed with BAN logic (see next chapter) and thus has actually been
believed to be secure for many years. But then the following interleave attack has been discovered
(after which it was found that this attack fell outside the assumptions of BAN logic):

a.1. A→I: {A.nA}pI
(A innocently starts the run with I)

b.1. I(A)→B: {A.nA}pB
(I decrypts the message, encrypts it again for
B and forwards it to him)

b.2. B→I(A): {nA.nB}pA
(Thinking that he talks with A, B answers
properly)

a.2. I→A: {nA.nB}pA
(I cannot decrypt this, but forwards it to A;
it is exactly what A expects, since A cannot
determine who actually created nB !)

a.3. A→I: {nB}pI
(A answers duly, so I gets to know nB)

b.3. I(A)→B: {nB}pB
(now also B gets the expected response)

a and b indicate the two instances of the protocol; I(A) means that I sends the message, but
making it appear to come from A.

Note, that in this attack the intruder plays an active role, i. e. at the start A really intends
to communicate with I, but I does not obey to the protocol.

14

At the end of the attack, I knows both nonces and caused the following mismatch in A’s and
B’s perception: A assumes that he exclusively shares the knowledge of nA and nB with I, whereas
B assumes that he ran the protocol with A and exclusively shares the knowledge only with him.

3.3.4 Replay

Here the attacker monitors a (possibly partial) run of the protocol and later replays some messages.
This can happen if the protocol does not have any mechanism for distinguishing between separate
runs or cannot determine the freshness of messages.

As an example, suppose a military ship which gets its commands from a base using an encrypted
protocol. An attacker must not be able to crack any cipher, he must not even now what protocol
is used. If he observes the communication and the ship for a while, then after some time he will
have a fairly rich table mapping a certain dialog to the ship’s reaction (turns, speed corrections
and the like). This enables him to control the ship just be repeating a desired dialog.

This style of attack can be foiled with devices like nonces, run identifiers, timestamps, and
indeterministic encryption.

3.3.5 Algebraic

Aside from purely “logical” attacks described above which exploit a weakness in the protocol
itself it must not be forgotten that it may also be possible to break the underlying cryptographic
algorithms. Almost every known algorithm has one or more algebraic identities (which may be
already known or—worse—not yet discovered) which are not necessary for the algorithm’s purpose
but are a consequence of the mathematical structure. There are known cases of “unfortunate”
combinations of such an identity with an otherwise secure protocol that lead to a completely flawed
system.

15

Chapter 4

Formal approaches

The problem to establish secure session keys between two participants of a distributed system is
so fundamental that it has led to a great deal of research. This, in turn, has led to a greater and
even more sophisticated problem: the formal analysis of security protocols, although most of the
work is done on authentication and key exchange.

People have found flaws in seemingly secure protocols even years after they were proposed.
Section 3.3 showed some examples. This situation is highly unsatisfying; protocol designers wanted
tools that could prove a protocol’s security from the start.

Today, after roughly 20 years of research, there are four basic approaches to cryptographic
protocol analysis (see [Schn96], [Pa02]), which are described here in brief. But some general
considerations must be done before.

4.1 What formal verification can and cannot do

Formal methods can help to

• specify the system’s boundary, i. e. the interface between the system and its environment

• characterize a system’s behavior precisely; some of the current systems are even able to
reason about real-time behavior

• precisely define the system’s desired properties

• prove that a system meets its specification; some methods can even provide counterexamples
if this is not the case

• force the designer to think about the protocol in a proper and thorough way: he must have
a clear idea of what exactly he wants to achieve and must make assumptions explicit and
non-ambiguous.

It should be emphasized that any proof of correctness is always relative to the formal spec-
ification of the system and the required properties and also to the assumptions of the formal
system itself. An attack to the BAN–certified Needham-Schroeder-Public-Key protocol (see sub-
section 3.3.3) spectacularly demonstrated the importance of this principle. There will always be
a gap between what a designer has in mind and his first codification, which no formalization can
eliminate.

Another problem is the difference between an abstract mathematical model and a real-world
instantiation of a system. Systems do not run isolated; they operate in some environment. The
formal specification of a system must always include the assumptions made about an environment.
As soon as one of these assumptions does not hold (maybe the environment changed or the designer
forgot about a particular aspect), the conclusion (security) is invalid and all bets are off. So, a
clever intruder analyzes all assumptions and tries to break the weakest one.

16

4.2 Using general-purpose verification tools

The main idea of this approach is to treat a cryptographic protocol as any other distributed
program and use a model checking tool to prove its correctness.

Some ideas involve general techniques like state machines or petri nets, other researchers de-
veloped more specific tools like Varadhrajan’s “LOTOS” or Kemmerer’s “Ina Jo”. The CSP
approach this seminar deals with also falls in this category. The correctness proof is conducted
automatically by exhaustive search in a model. Thus, this approach is capable of delivering a
counterexample if a system does not meet its specification.

The problem of this approach is that such systems are not exactly suitable for this job since they
were designed to prove correctness, but correctness is not the same as security; subtle pitfalls that
are peculiar to security are either not considered or are extremely difficult to specify. Furthermore,
including the intruder in the model with full generality quickly leads to the state explosion problem
and makes analysis infeasible.

In [HPS01], a recent work from Heisel, Pfitzmann, and Santen, this approach is enriched
by proof techniques. The authors use a slight extension of CSP to develop a necessary and
sufficient condition under which a concrete (refined) system preserves confidentiality to an abstract
specification. They demonstrated the applicability on a toy example, but a lot of research in this
direction is necessary to actually make it applicable to real-world problems. Automating the proof
with tool support may be the biggest open problem by now.

4.3 Developing expert systems

The idea of this approach is to develop an expert system that the protocol designer can use to
generate and investigate various scenarios. The system starts with a given undesirable state (e.
g. the intruder knows the content of a secret message) and attempts to discover if this state is
reachable from an initial state.

While this approach better identifies known flaws, it neither guarantees security nor provides
techniques for developing attacks. It is good at determining whether a protocol contains a given
flaw, but is unlikely to discover new ones.

One of the earliest systems is the “Interrogator” by Millen, Clark and Freedmann which models
protocol participants as communicating state machines whose messages are subject to interception
and alteration by attackers.

The “NRL Protocol Analyzer” by C. Meadows operates similarly. But unlike the Interrogator,
an unlimited number of—possibly interleaved—protocol rounds are allowed.

4.4 Modal logic

Modal logics consist of a language to describe various statements of a protocol such as what
participants know or believe, and some inference rules which are used to derive new statements
from the current ones. The goal of the analysis is to derive a statement that represents the
correctness condition of the protocol. The designer’s inability to derive it indicates that the
protocol may not be correct.

This approach is the most popular by now and was pioneered by Michael Burrows, Martin
Abadi, and Roger Needham. They developed a formal logic for the analysis of knowledge and belief,
called “BAN logic”. It does not provide a proof of security, it merely deals with authentication.

BAN logic does not attempt to model a protocol in its full richness, but uses a form called
“idealized protocol”. The statements itself are quite simple and straightforward; they include
things like “Alice believes X”, “Alice said X”, or “X is fresh”. By using inference rules the
participant’s beliefs in the protocol can be discovered.

BAN logic has been successfully used to find flaws in several protocols including Needham-
Schroeder and an early draft of the widely used X.509. However, it also has some severe disad-
vantages that confine its utility:

17

• BAN logic uses many universal and quite strong assumptions; e. g. that all participants are
trustworthy and do not release secrets and that each encrypted message contains sufficient
redundancy to allow a participant who decrypts it to decide whether he has used the right
key. In many real-world systems it is very hard to ensure these properties.

• The mapping from a real protocol to its idealized form abstracts away many important
aspects. BAN logic makes no difference between seeing a message and understanding it, and
does not model the revision of belief, trust (or the lack of it), or knowledge.

Thus, BAN logic is a great tool for finding attacks, but cannot give a trustworthy proof of
security. Other logic systems have been published that extend BAN’s abilities and try to reduce
its shortcomings.

4.5 Algebraic approach

Another approach to apply formal methods to cryptographic protocol analysis is to model the
protocol as an algebraic system. Research in this area has not been as active as research in
developing logics of belief and knowledge. However, algebraic models were successful to represent
very subtle kinds of knowledge in cryptographic protocols.

The first work in this direction is by Dolev and Yao. In their model, they assume that the
network is under the control of the intruder who can read all traffic, later and destroy messages,
and perform any operation, such as encryption, that is available to legitimate users of the system.
However, it is assumed that initially the intruder does not know any information that is to be kept
secret, such as encryption keys belonging to legitimate users of the system. Since the intruder
can prevent any message from reaching its destination, and since he/she can also create messages
of her own, Dolev and Yao treat any message sent by a legitimate user as a message sent to the
intruder and any message received by a legitimate user as a message received from the intruder.
Thus, the system becomes a machine used by the intruder to generate words. These words obey
certain rewrite rules, such as the fact that encryption and decryption with the same key cancel
each other out. Thus, finally, the intruder manipulates a term rewriting system. If the goal of the
intruder is to find out a word that is meant to be secret, then the problem of proving a protocol
secure is equivalent to the problem of proving that a certain word cannot be generated in a term
rewriting system.

A more recent work from M. Abadi and A. Gordon uses an extension of the pi calculus, called
“spi calculus”. It permits an explicit representation of the use of cryptography in protocols. The
intruder is not explicitly modeled, and this is a main advantage of the approach. Modeling the
intruder can be tedious and can lead to errors (e.g., it is very difficult to model that the intruder
can invent random numbers but is not lucky enough to guess the random secrets on which the
protocol depends). Instead, the intruder is represented as an arbitrary spi calculus process.

18

Bibliography

[RySchn01] Peter Ryan, Steve Schneider. Modeling and analyzing security protocols: the CSP
approach. Addison-Wesley, 2001.

[Pf00] Andreas Pfitzmann. Sicherheit in Rechnernetzen: Mehrseitige Sicherheit in verteilten und
durch verteilte Systeme. Lecture script, 2000.

[Schn96] Bruce Schneier. Applied Cryptography. Second Edition. John Wiley & Sons, Inc., pages
65–68, 1996.

[Pa02] Abhinay Pandya. Formal specification and verification of security protocols. 2002. Online
available at http://www.it.iitb.ac.in/~abhinay/seminar/

[HPS01] Maritta Heisel, Andreas Pfitzmann, Thomas Santen. Confidentiality-preserving refine-
ment. 2001.

19

	Preface
	1 Aspects of security
	1.1 Security properties
	1.2 Attacker models
	1.3 Limits of cryptography and security protocols

	2 Principles of cryptographic algorithms
	2.1 Keys and why they are needed
	2.2 Symmetric systems
	2.3 Asymmetric systems
	2.4 Cryptographic hash functions
	2.5 Diffie-Hellman key exchange

	3 Security protocols
	3.1 Notation of protocols
	3.2 Example protocols
	3.3 Examples of vulnerabilities and attack types

	4 Formal approaches
	4.1 What formal verification can and cannot do
	4.2 Using general-purpose verification tools
	4.3 Developing expert systems
	4.4 Modal logic
	4.5 Algebraic approach

	Bibliography

