Projective Geometry

After [N. J. Wildberger's YouTube lecture series http://www.youtube.com/watch?v=NYK0GBQVngs et al

Martin Pitt (martin@piware.de)

May 28, 2015

Projective geometry is the geometry involving only a straightedge. It is the fundament for affine, Euclidean, spherical, hyperbolic, and other geometries.

Classification of geometries

Notation

- **Points:** projective points have lower-case variables (a, p); affine (Euclidean) points have upper-case variables (A, P); the product of two points ab is the line that goes through a and b
- **Lines:** projective lines have upper-case variables (L, M); affine lines have lower-case variables (l, m); the product of two lines AB is their intersection, i. e. a point

Important Theorems

- **Pappus' Theorem:** If a_1, a_2, a_3 are collinear and b_1, b_2, b_3 are collinear: $c_1 := (a_2b_3)(a_3b_2), c_2 := (a_1b_3)(a_3b_1), c_3 := (a_2b_3)(a_3b_2)$ are collinear.
- **Pascal's Theorem:** If $a_1, a_2, a_3, b_1, b_2, b_3$ are points on a conic: $c_1 := (a_2b_3)(a_3b_2), c_2 := (a_1b_3)(a_3b_1), c_3 := (a_2b_3)(a_3b_2)$ are collinear.
- **Desargues Theorem:** If two triangles $\overline{a_1a_2a_3}$ and $\overline{b_1b_2b_3}$ are perspective from a point p, i. e. a_1b_1, a_2b_2, a_3b_3 are concurrent; then they are perspective from a line L, where $(a_1a_2)(b_1b_2), (a_2a_3)(b_2b_3), (a_3a_1)(b_3b_1)$ are collinear).

Perspectivity

In arts, photography, etc., one often has a horizon and perspective. In these projections, these rules hold:

- Lines are projected to lines.
- All parallel lines meet at a point on the horizon ("point at infinity"). There is one point on the horizon for each family of parallel lines.
- Conics are projected to conics. E. g. a parabola or a hyperbola will look like an ellipse. All conics will look elliptic as they originate from slicing a cone.

Projective homogeneous coordinates

In affine geometry, lines from a 3D object through the projective plane are parallel, and projections maintain linear spacing. In projective geometry, they meet in two points ("observer" or "horizon"), and projections distort linear spacing.

In **one-dimensional geometry**, the projective line \mathbb{P}^1 is the space of one-dimensional subspaces of the two-dimensional \mathbb{V}^2 , i. e. a line through [0,0]. This is specified by a proportion [x:y] (**projective point**); canonically, either [x:1], or [x:0] for the special case of the subspace being the x axis (representing "point at ∞ ")

In two-dimensional geometry, the projective plane \mathbb{P}^2 is described with a three-dimensional vector space \mathbb{V}^3 , projective points a = [x : y : z] (lines through the origin) and projective lines $A = (l : m : n) \Leftrightarrow lx + my + nz = 0$ (planes through the origin).

In particular, we introduce a **viewing plane** $y_{z=1}$. Then any projective point $[x : y : z], z \neq 0$ meets the viewing plane at $[\frac{x}{z} : \frac{y}{z} : 1]$. Any projective point [x : y : 0] corresponds to the two-dimensional equivalent [x : y], representing the "point at ∞ in the direction [x : y]". So the projective plane \mathbb{P}^2 corresponds to the affine plane \mathbb{A}^2 plus the projective line \mathbb{P}^1 for the points at infinity.

Any projective line $(l:m:n), l, m \neq 0$ meets the viewing plane at the line lx + my = n.

Coordinates in the viewing plane are called $X := \frac{x}{z}$ and $Y := \frac{y}{z}$.

This introduces a duality between lines and points: Any theorem has a dual counterpart where lines and points, meets and joins etc. are interchanged.

Calculations with homogenous coordinates

Join of points: If $a = [x_1 : y_1 : z_1]$ and $b = [x_2 : y_2 : z_2]$, then

$$ab = (y_1z_2 - y_2z_1 : z_1x_2 - z_2x_1 : x_1y_2 - x_2y_1)$$

Meet of lines: If $L = (l_1 : m_1 : n_1)$ and $M = (l_2 : m_2 : n_2)$, then

$$ab = [m_1n_2 - m_2n_1 : n_1l_2 - n_2l_1 : l_1m_2 - l_2m_2]$$

Incidence: The point [x:y:z] and the line (l:m:n) are incident $\Leftrightarrow lx + my + nz = 0$

Linear transformation: A linear transformation $(x, y) \to (x', y') = (x y) \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is represented homogeneously with $[x:y:z] \to [x':y':z'] = [x y z] \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Affine transformation: A translation (non-linear) $(x, y) \rightarrow (x+a, y+b)$ is represented homogeneously

with
$$[x:y:z] \to [x':y':z'] = [x \ y \ z] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{bmatrix} = [x + az : y + bz : z]$$

Metrical structure

Add a "null conic" C to the geometry by defining a (homogeneous) symmetric matrix $A = \begin{bmatrix} a & d & f \\ d & b & g \\ f & g & c \end{bmatrix}$

For any point p = [x : y : z], setting $pAp^T = 0$ expands to the general equation of a homogeneous conic: $ax^2 + by^2 + cz^2 + 2dxy + 2fxz + 2gyz = 0$

When dividing by z^2 we get the affine coordinates: $aX^2 + bY^2 + 2dXY + 2fX + 2gY + c = 0$

This matrix A defines a symmetric bilinear form (dot/inner product) on \mathbb{V}^3 : $v \cdot w := vAw^T$

The usual **Euclidean** one is $A_E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ but there are other interesting ones too, like the **relativistic** (Lorentz, Minkowski, Einstein) structure $A_R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

This defines the notion of **perpendicularity**: $p \perp q \Leftrightarrow p \cdot q = pAq^T = 0$. This is well-defined projectively and in \mathbb{P}^2 .

Polarity

 $aAb^T = 0$ can be interpreted as $a(Ab^T) = 0$ and since $L := Ab^T$ defines a line, as aL = 0. I. e. the dot product defines a duality between points and lines, called **polarity**.

Pole: The pole *a* of a line *L* is the inversion point of *L*'s closest point to C. $\mathbf{a} = \mathbf{L}^{\perp}$ **Polar:** The line *L* is the polar of the pole point *a*. $\mathbf{L} = \mathbf{a}^{\perp}$

Construction of polar of *a*:

- Find "null points" $\alpha, \beta, \gamma, \delta$ on C so that $(\alpha\beta)(\gamma\delta) = a$ (i. e. select two secants of C which pass through a)
- Define $b := (\alpha \delta)(\beta \gamma)$ and $c := (\alpha \gamma)(\beta \delta)$, i. e. the two intersections of the other diagonals of the quadrangle $\alpha \beta \gamma \delta$
- Then $A = a^{\perp} = bc$. Also, $b^{\perp} = ac$ and $c^{\perp} = ab$ (three-fold symmetry of polars and poles produced by the three intersections of diagonals)
- Polar Independence Theorem: The polar $A = a^{\perp}$ does not depend on the choice of lines through a, i. e. the choice of $\alpha, \beta, \gamma, \delta$.

Construction of pole of A: Choose any two points $b, c \in A$. Then $a = (b^{\perp}c^{\perp})$.

Construction of polar of null point γ :

- Chose any two secants A, B that pass through γ
- Construct their poles A^{\perp}, B^{\perp}
- Polar $\Gamma = \gamma^{\perp}$ is the tangent $(A^{\perp}B^{\perp})$

Polar Duality Theorem: For any two points a and b: $a \in b^{\perp} \Leftrightarrow b \in a^{\perp}$ (as A is symmetric)