
Your turn-key Cockpit UI in a CI/CD ecosystem

Martin Pitt <mpitt@redhat.com>

DevConv.CZ 2019

Your turn-key Cockpit UI in a CI/CD ecosystem

Martin Pitt <mpitt@redhat.com>

DevConv.CZ 2019

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

mailto:mpitt@redhat.com
mailto:mpitt@redhat.com

IaaS

IaaS

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. 10-second history of cloud computing
2. Infrastructure aaS: my other computer is a data center

PaaS

PaaS

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. Platform aaS: Kubernetes

SaaS

SaaS

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. Software aaS: we don’t host our source repos any more, GitHub

CoCICDaaS

CoCICDaaS

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. undeniably the pinnacle of evolution: Cockpit Continuous
Integration and Deployment aaS

2. that’s what I introduce today

Cockpit what?

• Interactive Server admin web interface
• Easy setup and troubleshooting for one or a few machines
• Included in all major distros

Cockpit what?

• Interactive Server admin web interface
• Easy setup and troubleshooting for one or a few machines
• Included in all major distros

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Cockpit what?

1. Conceptually: Linux session running in a web browser; technically
very similar to ssh/VT/GNOME login

2. Aimed at admins who are new to Linux, e. g. coming from the
Windows world and familiar with the concepts, but not Linux
terminology

3. but also to experienced ones for infrequent tasks (set up RAID once
a year, don’t remember all the commands); not just setup, but also
investigating “what is wrong with this machine”

4. apt or yum install away in Fedora, Atomic, RHEL, Debian, Ubuntu,
Arch

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. System page: Summary information about the machine and its
current status

2. can drill down into more detailed graphs and information.
3. Menu on the left shows available administration pages for this

machine, and can switch between multiple machines

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. subpage of Networking is a UI for firewalld

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. See and interact with your local libvirt or ovirt VMs
2. Cockpit team maintains pages seen on the screenshots

Imagine your own page here!

<script src="../base1/cockpit.js" />

API docs: https://cockpit-project.org/guide/latest

Imagine your own page here!

<script src="../base1/cockpit.js" />

API docs: https://cockpit-project.org/guide/latest

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Imagine your own page here!

1. there will always be things missing for your use cases, so designed
from the ground up to be easily extensible

2. offers JS API to interact with connected target machine: programs,
D-Bus, files, sockets, etc.

https://cockpit-project.org/guide/latest
https://cockpit-project.org/guide/latest

<table>
<tr>

<td><label for="address">Address</label></td>
<td><input id="address" value="8.8.8.8"></td>

</tr>
<tr>

<td><button id="ping">Ping</button></td>
<td></td>

</tr>
</table>

<p> <pre id="output"></pre> </p>

<table>
<tr>

<td><label for="address">Address</label></td>
<td><input id="address" value="8.8.8.8"></td>

</tr>
<tr>

<td><button id="ping">Ping</button></td>
<td></td>

</tr>
</table>

<p> <pre id="output"></pre> </p>20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. little example: create a UI for ping
2. input for address, button to start, and pre for output

const button = document.getElementById("ping");
const address = document.getElementById("address");
const result = document.getElementById("result");
const output = document.getElementById("output");

button.addEventListener("click", () => {
cockpit.spawn(["ping", "-c", "4", address.value])

.stream(data => output.append(
document.createTextNode(data))

.done(() => {
result.innerHTML = "success";
result.style.color = "green";

});
});

const button = document.getElementById("ping");
const address = document.getElementById("address");
const result = document.getElementById("result");
const output = document.getElementById("output");

button.addEventListener("click", () => {
cockpit.spawn(["ping", "-c", "4", address.value])

.stream(data => output.append(
document.createTextNode(data))

.done(() => {
result.innerHTML = "success";
result.style.color = "green";

});
});20

19
-0

1-
20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. wire cockpit API for running a process - ping in this case to this UI
2. whenever something new on stdout → append to output field for

live streaming
3. slightly simplified, e. g. no error handling, but this is the gist
4. similar structure for a D-Bus call, or files

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. initially looks like this; enter address, press button

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. and you see the result
2. appears in the menu via a little declaration file called manifest; not

shown here
3. above good enough for your own personal environment/company

specific pages
4. ex: cheap monitoring/control of services or house automation
5. cockpit more popular, more extension projects which are public, get

packaged and team-maintained
6. ex: UI for podman, building installable OS images, IPA server, Fleet

Commander
7. proposed: NFS server, SSL certificate management
8. then tossing the above into a single HTML file is not good enough

Public projects

• Code layout
• Modern frameworks: React, PatternFly
• Build system: Babel, ESLint, webpack
• Tests/CI
• Automated releases

Public projects

• Code layout
• Modern frameworks: React, PatternFly
• Build system: Babel, ESLint, webpack
• Tests/CI
• Automated releases

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Public projects

1. Separation of HTML, CSS, and JavaScript into lots of little files for
maintainability

2. Don’t do UI by hand like in pinger, integrate React and PatternFly
3. JavaScript toolchain to compile all your files into a blob the browser

can understand
4. complex build system, integrate static code checks
5. create automated browser tests, run them in PRs
6. test on various operating systems, maintain VM images for these
7. release very often to GitHub, various distros, COPR, dockerhub,

update your project page, etc.
8. putting this together is a daunting task

Bootstrapping with Cockpit starter-kit

git clone https://github.com/cockpit-project/starter-kit
cd starter-kit
make devel-install
sudo make install
make rpm

Bootstrapping with Cockpit starter-kit

git clone https://github.com/cockpit-project/starter-kit
cd starter-kit
make devel-install
sudo make install
make rpm

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Bootstrapping with Cockpit starter-kit

1. we put together the Cockpit starter kit, does all that for you
2. best practices for a Cockpit project
3. example UI with all the glory I mentioned before
4. devel-install: run straight out of your build tree; install: /usr/local/,

build rpm

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

1. looks unspectacular, but demonstrates cockpit API (reading
hostname) and LESS/CSS

2. point is to be a simple React component which you can directly
hack on without worrying about all the boilerplate

Integration testing

$ TEST_OS=rhel-7-6 make check
1..1
--
testBasic (__main__.TestStarterKit)
#

ok 1 testBasic (__main__.TestStarterKit) # duration: 21s

Integration testing

$ TEST_OS=rhel-7-6 make check
1..1
--
testBasic (__main__.TestStarterKit)
#

ok 1 testBasic (__main__.TestStarterKit) # duration: 21s

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Integration testing

1. RPM build, integration test
2. test looks simple, but does a lot of stuff for you
3. download appropriate Cockpit VM image (lots of OSes), builds

code, installs it into the VM, starts headless Chromium, runs your
test on it

4. re-uses VMs of Cockpit team, half-time job to maintain them
5. integrate into CI: webhook, ask Cockpit team to whitelist to run on

our infra

Automated releases

$ cat ./cockpituous-release
RELEASE_SOURCE="_release/source"
RELEASE_SPEC="cockpit-starter-kit.spec"
RELEASE_SRPM="_release/srpm"

job release-source
job release-srpm

job release-koji -k master
job release-koji f29
job release-bodhi F29
job release-github
job release-copr @myorg/myrepo

Automated releases

$ cat ./cockpituous-release
RELEASE_SOURCE="_release/source"
RELEASE_SPEC="cockpit-starter-kit.spec"
RELEASE_SRPM="_release/srpm"

job release-source
job release-srpm

job release-koji -k master
job release-koji f29
job release-bodhi F29
job release-github
job release-copr @myorg/myrepo

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Automated releases

1. release process: push a signed git tag with a summary of changes
2. our cockpituous infra then builds release tarballs, srpms, pushes

them to github, Fedora, dockerhub, copr, etc.
3. real file has lots of comments
4. just like with CI, ask Cockpit team
5. that part is relatively easy to self-host: container with a bunch of

credentials; or run on your laptop

https://github.com/cockpit-project/starter-kit/pull/75

https://github.com/cockpit-project/starter-kit/pull/75

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

https://github.com/cockpit-project/starter-
kit/pull/75

1. routine maintenance tasks: latest NPM dependencies, uploading
translation templates to Zanata, download translations

2. bots for code maintenance; example for NPM update
3. proposes a PR for updating to latest React, tests pass; human can

sign off and presses the button

Current users

• Composer
• cockpit-podman
• cockpit-ostree

Current users

• Composer
• cockpit-podman
• cockpit-ostree

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Current users

1. these projects are real-life, thus this is not a pipe dream; let’s add
your’s

2. Our team wants to scale from "we build UIs for everything" to "we
support your team with building your UI"

3. we work a lot on providing CI infrastructure, cross-project testing
and maintenance

https://github.com/weldr/welder-web
https://github.com/cockpit-project/cockpit-podman
https://github.com/cockpit-project/cockpit-ostree
https://github.com/weldr/welder-web
https://github.com/cockpit-project/cockpit-podman
https://github.com/cockpit-project/cockpit-ostree

Contact

• #cockpit on Freenode
• https://cockpit-project.org
• Hackfest: Sunday 14:30 to 15:15, room A218

Contact

• #cockpit on Freenode
• https://cockpit-project.org
• Hackfest: Sunday 14:30 to 15:15, room A218

20
19

-0
1-

20

Your turn-key Cockpit UI in a CI/CD ecosystem

Contact

1. Home page leads to mailing lists, documentation
2. Join us on the hackfest on Sunday
3. thanks for your attention; Q+A

