
Cockpit what?

• Interactive Server admin web interface
• Easy setup and troubleshooting for one or a few machines
• Included in all major distros

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Cockpit what?

• Conceptually: Linux session running in a web browser; technically
very similar to ssh/VT/GNOME login

• Tool for experimenting, learning, troubleshooting, and doing
infrequent tasks



Extending LVM

pvcreate /dev/sdb2
vgextend vg0 /dev/sdb2
lvresize --extents ’+100%FREE’ vg0/data1
resize2fs /dev/vg0/data1

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Extending LVM

• for example, adding a new PV to an LVM and resizing the file
system you can spend some time coming up with these commands

• lots of possibilities for screwing up
• you can do it simply and safely with Cockpit like this → go to local

browser
• Storage page, vg0 in Devices (top right), + in Physical Volumes,

add sdb2
• expand data1 table line, click grow



Accessible from any browser

• Windows/Edge
• Mobile devices
• Simple install
• Zero configuration

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Accessible from any browser

• being web based makes this server UI available to places that you
traditionally don’t reach with ssh

• Switch to Windows virt-viewer, open Edge, show Cockpit
• Quit virt-viewer
• Move to local browser, enable mobile mode (Ctrl+Shift+M)
• Zero configuration so far, other than possibly installing cockpit pkg

and enabling cockpit.socket
• But wait, you say – want to admin that server over there, but not

allowed to open new port and system service?
• In larger environments it’s impractical to install cockpit server on

hundreds of machines and using the login web page; explain better
solutions

• Glimpse of how to customize how cockpit runs and how to
authenticate to it



Anatomy: cockpit-ws

cockpit-ws

cockpit-session/PAM

cockpit-bridge
mkfs
D-Bus calls
libvirt socket
...

Login Sessionhttps://

• TCP http+WebSocket ↔ JSON pipe
• collect credentials

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Anatomy: cockpit-ws

• for configuring, extending, and embedding Cockpit you need to
coarsely understand the components of it

• this: default structure, what I just showed you and what you will
most probably see the first time you try it

• all components in cockpit communicate to each other via a JSON
protocol on standard pipes, usually stdio

• this provides a lot of flexibility and extensibility, as we’ll see shortly
• browsers and JS only speak HTTP and WebSocket, and can’t

directly talk to Linux system APIs
• so you always need a web server somewhere, cockpit-ws
• ws purpose: communicate with the browser for getting credentials:

login page, krb negotiation, client cert
• ws: deliver HTML/js content, connects JSON protocol on the

WebSocket to pipes to the other components; runs as unprivileged
system user



Anatomy: cockpit-session

cockpit-ws

cockpit-session/PAM

cockpit-bridge
mkfs
D-Bus calls
libvirt socket
...

Login Sessionhttps://

• ws credentials → PAM session
• forward JSON pipe to session leader

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Anatomy: cockpit-session

• need some helper to actually start session: use creds from ws to
start PAM login session, connect pipe to it

• standard is cockpit-session: very small, auditable suid root helper
• but doesn’t have to be, that’s the flexible part



Anatomy: cockpit-bridge

cockpit-ws

cockpit-session/PAM

cockpit-bridge
mkfs
D-Bus calls
libvirt socket
...

Login Sessionhttps://

• session leader, cockpit’s “bash”
• JSON on stdio ↔ system APIs

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Anatomy: cockpit-bridge

• bridge: session leader, moral equivalent of what bash is in ssh
session

• JSON protocol on stdio to system APIs: exec programs, call D-Bus,
work with files or sockets

• runs as target user in login session; complex, but no special
privileges



SSH sessions

cockpit-ws

cockpit-session

cockpit-bridge
Login Session

ssh

ssh

https://

sshd

cockpit-bridge
Login Session

nothing Cockpit specific running outside of the user session20
20

-0
1-

19
Authenticate to Cockpit from anywhere

SSH sessions

• ws and the login session don’t need to run on the same machine
• most obvious replacement of session helper is ssh; that already

starts sessions, does the PAM bits and forwards its initial stdio to
the session lead; it would just launch cockpit-bridge instead of bash

• browser: go to Dashboard, add cockpit.dev:2201
• interesting property: nothing Cockpit specific running in the system,

no ws, no extra open port; only bit is bridge, but that’s
uninteresting from security POV



Bastion host

cockpit-ws ssh

https://

sshd

cockpit-bridge
Login Session

Enforce using ssh in cockpit.conf(5):

[WebService]
RequireHost=true

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Bastion host

• further illustrated by a mode that we call “bastion host”
• disable cockpit-session and local logins, only use ssh
• can run in container
• no ws on critical machines, don’t trust cockpit-session
• switch to browser; log out, use “connect to” for cockpit.dev:2201
• finish the demo script, press Enter



Other authentication setups

• SSO/Kerberos in Identity Management domains
• smart card/client certificate authentication
• OAuth (external embedding)
• Foreman: included cockpit-ws with dynamic configuration

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Other authentication setups

• Cockpit supports common authentication systems out of the box
• IdM is very common; if you have a krb ticket, you get a session

immediately without the login page
• browsers can ask for TLS client certificates, commonly with smart

cards, and present them to the web server; latest Cockpit versions
supports that

• Foreman has a “Web Console” button; interesting case for seamless
transition between Foreman and Cockpit

• Show video
• already has ssh to all maintained machines
• runs a single cockpit-ws process on its server, and dynamically

configures it for selected target machine
• custom cockpit session helper to do OAuth between Foreman

session and cockpit-ws, and wrap cockpit-ssh session starter
• not enough time to demo and explain all of this; just keep in mind

that it’s possible



Embedding into existing session

Linux Desktop session

GNOME
...

cockpit-bridge
mkfs
D-Bus calls
...

Browser

cockpit-ws

cockpit-ws -p 9999 --no-tls --local-session=/usr/bin/cockpit-bridge

firefox http://localhost:9999

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Embedding into existing session

• what I do want to show: opposite direction; “replace
cockpit-session” can also mean “by nothing”

• due to common JSON protocol, we can connect ws directly to a
cockpit-bridge

• take a step back: if I want to admin this very machine, it’s in a
running Linux session, it knows who I am

• put the whole auth structure inside out and instead run cockpit-ws
as my user inside my session

• open –local-session in shell
• open localhost:9999 in firefox
• alarm bells: exposes my session to a TCP port without any auth



Embedding into existing session: once more with safety!

Linux Desktop session

GNOME
...

cockpit-bridge
mkfs
D-Bus calls
...

Browser

cockpit-ws

Net namespace

/usr/libexec/cockpit-desktop [page]

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Embedding into existing session: once more with
safety!

• need to hide that port; put browser and cockpit-ws into network
namespace, then they live in a completely isolated world

• do some work to hide browser chrome, use webkit if available
• cockpit-desktop /
• wants to run priv bridge, can accept or decline
• decline, R/O view
• can show an individual iframe, “page”
• suddenly you end up with a halfway decent desktop app
• just the storage page, replacement for gnome-disks
• cockpit-desktop podman
• cockpit-desktop is small shell script, feel free to inspect and bend to

your will



Conclusion

• Authentication is very flexible
• Works with zero configuration
• Can be arbitrarily embedded and customized

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Conclusion

• Cockpit provides a set of standard auth protocols that are being
used in today’s modern deployments

• Once you know about the structure, you can combine ssh, web
servers, reverse proxies, and custom auth helpers to embed Cockpit
anywhere you want



Q & A

Contact:

• #cockpit on Freenode
• https://cockpit-project.org

Useful links:

• Authentication configuration
• Authentication protocol

20
20

-0
1-

19
Authenticate to Cockpit from anywhere

Q & A

• Home page leads to mailing lists, documentation
• thanks for your attention; Q+A

https://cockpit-project.org/guide/latest/authentication.html
https://github.com/cockpit-project/cockpit/blob/master/doc/authentication.md

